Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications.
نویسندگان
چکیده
This work focuses on the synthesis and characterization of a novel bioresorbable glass ceramic phosphate-based material (GC-ICEL). More specifically, its solubility in different aqueous media (water, Tris-HCl and acellular simulated body fluid) and the response of human stromal cells cultured on it were investigated. X-ray diffraction analysis showed the presence of two crystalline phases identified as Na(2)Mg(PO(4))(3) and Ca(2)P(2)O(7) and dissolution tests highlighted a preferential dissolution of the Na(2)Mg(PO(4))(3) phase and of the residual amorphous phase in all the chosen media. Soaking tests in simulated body fluid showed precipitation of a hydroxyapatite layer, demonstrating the bioactivity of GC-ICEL, which is partially due to the reported bioactivity of Ca(2)P(2)O(7). The effect of GC-ICEL on adhesion, proliferation and osteoblastic gene expression of human bone marrow-derived stromal cells was also studied. Combining molecular and biochemical analyses, it was found that bone marrow cell differentiation was stimulated over proliferation on GC-ICEL. Moreover, the expression of bone-related genes in cells cultured on GC-ICEL confirmed the bioactivity of this phosphate-based glass ceramic, which might have a stimulatory effect on osteogenesis.
منابع مشابه
Feasibility and tailoring of bioactive glass-ceramic scaffolds with gradient of porosity for bone grafting.
The aim of this research study is the preparation and characterization of graded glass-ceramic scaffolds that are able to mimic the structure of the natural bone tissue, formed by cortical and cancellous bone. The material chosen for the scaffolds preparation is a glass belonging to the system SiO( 2)-P(2)O(5)-CaO-MgO-Na( 2)O-K(2)O (CEL2). The glass was synthesized by a conventional melting-que...
متن کاملHigh strength bioactive glass-ceramic scaffolds for bone regeneration.
This research work is focused on the preparation of macroporous glass-ceramic scaffolds with high mechanical strength, equivalent with cancellous bone. The scaffolds were prepared using an open-cells polyurethane sponge as a template and glass powders belonging to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O. The glass, named as CEL2, was synthesized by a conventional melting-quenching route...
متن کاملResorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
Highly porous bioresorbable glass-ceramic scaffolds were prepared via sponge replication method by using an open-cell polyurethane foam as a template and phosphate-based glass powders. The glass, belonging to the P2O5-SiO2-CaO-MgO-Na2O-K2O system, was synthesized by a melting-quenching route, ground, and sieved to obtain powders with a grain size of less than 30 μm. A slurry containing glass po...
متن کاملCRYSTALLIZATION AND SINTERABILITY BEHAVIOR OF BIORESORBABLE CaO-P2O5-Na2O-TiO2 GLASS CERAMICS FOR BONE REGENERATION APPLICATION
Abstract:Some types of glass and glass ceramics have a great potential for making bone tissue engineering scaffolds, drug carrier and bone cements as they can bond to host bone, stimulate bone cells toward osteogenesis, and resorb at the same time as the bone is repaired. Calcium phosphate glass ceramics have very attractive properties that allow them to use in bone tissue engineering. Calcium ...
متن کاملGlass-ceramic scaffolds containing silica mesophases for bone grafting and drug delivery.
Glass-ceramic macroporous scaffolds were prepared using glass powders and polyethylene (PE) particles of two different sizes. The starting glass, named as Fa-GC, belongs to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O-CaF(2) and was synthesized by a traditional melting-quenching route. The glass was ground and sieved to obtain powders of specific size which were mixed with PE particles and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2010